Construction and properties of a class of private states in arbitrary dimensions

Adam Rutkowski,^{1,2,*} Michał Studziński,^{1,2} Piotr Ćwikliński,^{1,2} and Michał Horodecki^{1,2}

¹Institute of Theoretical Physics and Astrophysics, University of Gdańsk, 80-952 Gdańsk, Poland

²National Quantum Information Center, 81-824 Sopot, Poland

A quantum private states of a dimension d (so called pdits) is composed from a $d \otimes d A, B$ part called a "key", and A', B' called "shield", shared between Alice (subsystems A, A' and Bob (subsystems B, B') in such a way that the local von Neumann measurements on the key part in a particular basis will make its results completely statistically uncorrelated from the results of any measurement of an eavesdropper Eve on her subsystem E, which is a part of the purification $\psi_{ABA'B'E}$ of the pdit state $\rho_{ABA'B'}$. Pdits (especially pbits) are of great importance in quantum cryptography and have been studied extensively for some time. We present a construction of quantum states in dimension d that has at least 1 dit of ideal key, called private dits (pdits), which covers most of the known examples of private bits (pbits) d = 2. We examine properties of this class of states, focusing mostly on its distance to the set of separable states SEP, showing that for a fixed dimension of the key part d_k the distance increases with d_s . We provide explicit examples of PPT states (in d dimensions) which are nearly as far from separable ones as possible.

Let us consider the following state [1]:

$$\rho_{ABA'B'} = \sum_{l=0}^{d} \omega_l \in \mathcal{B}\left(\mathcal{H}_{d_k} \otimes \mathcal{H}_{d_k} \otimes \mathcal{H}_{d_s} \otimes \mathcal{H}_{d_s}\right), \quad (1)$$

where $\mathcal{B}(\mathcal{H})$ is the algebra of all bounded linear operators on Hilbert space \mathcal{H} , $d = \frac{1}{2}d_k(d_k - 1)$ and by d_k we denote the dimension of the key part acting on *AB* and by d_s the dimension of the shield part acting on *A'B'*. Now we describe each of the components from Eq. 1. First of all, we define the term ω_0 as:

$$\omega_{0} = \sum_{i,j=0}^{d_{k}-1} \left| i \right\rangle \langle j \right| \otimes \left| i \right\rangle \langle j \right| \otimes a_{ij}^{(0,0)}, \tag{2}$$

where every $a_{ij}^{(0,0)} \in \mathcal{B}\left(\mathcal{H}_{d_s} \otimes \mathcal{H}_{d_s}\right)$. From now, every matrix of the form Eq. 2 we will call matrix in the maximally entangled form. The rest of elements ω_l , for $1 \leq l \leq \frac{1}{2}d_k(d_k-1)$ from 1 are given by the following formula

$$\begin{split} \omega_{l} &= |i\rangle\langle i| \otimes \left|j\rangle\langle j\right| \otimes a_{00}^{(i,j)} + \left|i\rangle\langle j\right| \otimes \left|j\rangle\langle i\right| \otimes a_{01}^{(i,j)} \\ &+ \left|j\rangle\langle i\right| \otimes \left|i\rangle\langle j\right| \otimes a_{10}^{(i,j)} + \left|j\rangle\langle j\right| \otimes |i\rangle\langle i| \otimes a_{11}^{(i,j)} \end{split}$$

where $i, j = 1, ..., d_k - 1$ and i < j. In the above we also implicitly assume bijective function between indices l and i, j.

We formulate and prove the following lemmas and theorem concerning our construction of private states [1]

Lemma 1. Let us assume that we are given with $\rho_{ABA'B'}$ as in Eq. 1 and the pdit γ_0 in its maximally entangled form, then the following statement holds:

$$||\rho_{ABA'B'} - \gamma_0||_1 = 2q.$$

where $0 \le q \le 1$.

Lemma 2. Let us consider the class of states given by

$$\rho_{ABA'B'} = p\gamma_0 + \frac{q}{d} \sum_{i=1}^d \gamma_i, \qquad (3)$$

where q = 1 - p, $d = \frac{1}{2}d_k(d_k - 1)$ and states γ_0, γ_i are given by Eqs 2,3. Then the trace distance from the set of private dits in maximally entangled form is equal to

$$\frac{1}{2}||\rho_{ABA'B'} - \gamma_0||_1 = \frac{1}{1 + \frac{d_s}{d_s - 1}},$$
(4)

where d_s is the dimension of the shield part and d_k - the dimension of the key part.

Lemma 3. The distance between set of separable states SEP and class of states of the form

$$\rho_{ABA'B'} = p\gamma_0 + \frac{q}{d} \sum_{i=1}^d \gamma_i, \tag{5}$$

where q = 1 - p and $d = \frac{1}{2}d_k(d_k - 1)$ is bounded from below:

$$\operatorname{dist}(\rho_{ABA'B'}, \mathcal{SEP}) \ge 2 - \frac{2}{d_k} - \frac{2}{1 + \frac{d_s}{d_k - 1}}, \quad (6)$$

where d_s denotes the dimension of the shield part and the d_k dimension of the key part.

Theorem 4. For an arbitrary $\epsilon > 0$ there exists a PPT state ρ acting on the Hilbert space $\mathbb{C}^d \otimes \mathbb{C}^d$ with $d \leq \frac{c}{\epsilon^3}$ such that:

$$\operatorname{dist}(\rho, \mathcal{SEP}) \ge 2 - \epsilon, \tag{7}$$

where c is constant.

* fizar@ug.edu.pl

 Adam Rutkowski, Michał Studziński, Piotr Ćwikliński, and Michał Horodecki, Phys. Rev. A 91, 012335 (2015).