
Belavkin Filtering with Squeezed Light Sources

The theory of quantum �ltering was developed by V. P. Belavkin in the 1980's [1, 2] as the
extention of classical �ltering theory. It has been subsequently developed as a technique for
quantum measurement and control [3-5].

We applied the theory of measurement continuous in time based on quantum stochastic cal-
culus of Ito type [6] to derived the �ltering equation for a system whose output is either squzeed
light or it is mixed with a squeezed light. We considered the situation when the system is driven
by a coherent signal and the output �eld is mixed with a squeezed signal and the case when the
input �eld is taken in a squeezed state. For these two cases the input processes are described by
quantum Wiener annihilation processes A(·) and B (·) and we have

[A (t) , A∗ (s)] = [B (t) , B∗ (s)] = t ∧ s ,

where t ∧ s = min(t, s). The quantum It	o table will then have the form

(1)
× dB dB∗

dB 0 dt
dB∗ 0 0

,
× dA dA∗

dA mdt (n+ 1) dt
dA∗ ndt m∗dt

,

where n > 1 and |m|2 ≤ n (n+ 1). Let us note that the squezeed terms rely on the non-Fock
(i.e., Araki-Woods) representation and the scattering process is not well-de�ned in this case.

When the system is driven by a coherent input the unitary evolution operator V (t) of the
compound system (the system and the external �eld) satis�es the quantum stochastic di�erential
equation of the form

dV (t) =

{
L⊗ dB∗ (t)− L∗ ⊗ dB (t)−

(
1

2
L∗L+ iH

)
⊗ dt

}
V (t)(2)

with V (0) = 1. Here L is bounded operators and H self-adjoint. We derived the posterior
evolution conditioned by results of simultaneous measurement of quadratures

Y1(t) =
1√
2

(
Bout(t) +Bout∗(t) +A(t) +A∗(t)

)
,

Y2(t) =
1√
2i

(
Bout(t)−Bout∗(t)− (A(t)−A∗(t))

)
.

Here Bout(t) = V ∗(t)B(t)V (t) and it is called the output process.
As an example we took the system to be a single cavity mode in a Gaussian state. We proved

that when the system is initially in a Gaussian state it remains in a Gaussian state. We found the
expressions for the conditional mean values of the observables of the system and we encountered
the conditional dispersions of optical quadrature of the system. Moreover, we gave the answer to
the question when the �ltering equation transforms pure state into pure ones. In general, when
the measurement is imperfect pure states are not preserved.
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