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There is an increasing interest in studying quantum walks
lately. It is given by the potential application of quantum
walks models in many fields regarding physics, informa-
tion technology and chemistry. Quantum walks started as a
theoretical concept describing processes in nature. Subse-
quently the experimental realizations using trapped atoms
[1] and later cold ions [2, 3] and photons [4, 5] were con-
ducted.

In the present paper we investigate a limit distribution
of certain quantum walks. The work is motivated by paper
by Miyazaki et al. [6], where authors introduced quantum
walks models based on so called Wigner coins. Such coin
depends on three Euler angles α,β ,γ and the construction
of these matrices comes from the quantum mechanical rota-
tion operator and its irreducible matrix representation using
Wigner formula [10]. Wigner walks are very interesting,
since they exhibits trapping feature around the origin for
odd dimensions. The trapping is connected to the existence
of the point spectrum of the unitary propagator. This effect
was studied for example for the Grover walk on the line.
In [7], simple modifications of the Grover walks preserving
localization are provided. One of these modifications for
the three-state walk were also studied with respect to the
limit distribution [8]. The results were further evolved and
simplified in [9].

In [6], Wigner walks are analysed from the viewpoint of
the limiting probability distribution. The authors derived
general formulas for calculation of the limit distribution of
quantum walkers and showed the exact results for several
dimensions. It was shown that the velocity density does
not depend on the angle α. We show that the dependence
on γ can be eliminated through the simple rotation of the
standard coin basis. Further, the total velocity density can
be greatly simplified by a proper choice of the coin state
basis, which we call optimal. The optimal basis also reveals
some interesting features that are otherwise hidden.

As an example, we look at the two-state walk model
where the walker can move one step to the right or left at
each discrete moment. Instead of the angle β we use pa-
rameter ρ which express the maximal velocity of spreading
of the walk. The relations between β and ρ are cos β2 =
ρ, sin β
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In the standard basis, the velocity density gains form
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where I{... } means identity on the given interval and

M1 = −|qR|2 + |qL |2 ++2

p
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ρ
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The coefficients qR,L arise from the expression of the initial
coin state in the standard coin basis

|ψC〉= qR|R〉+ qL |L〉, |qR|2 + |qL |2 = 1.

The optimal basis changes M1 into

M1 =
1
ρ
(1− 2|h2|2).

We see that except the simplification, the density now de-
pends only on the probability |h2|2 to be in the optimal state.

The optimal basis is associated with elimination of the
peaks in the probability distribution and is given by a spe-
cific linear combination of eigenvectors of the coin. The
similar analysis can be done for higher-dimensional quan-
tum walks. Nevertheless, there exist some differences be-
tween even and odd dimensions. In both cases, the optimal
basis brings simplification of the velocity density expres-
sion. Moreover, one can immediately see some interesting
situation that might occur for certain choices of the initial
state.
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