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Husimi function [1] Q(q, p) of the density matrix ρ̂ is de-

fined as

Q(q, p) = 〈α|ρ̂|α〉

where |α〉 are coherent states of the linear harmonic oscila-

tor. A characteristic and important property of the Husimi

functions is the following. From all functions belonging to

the class of Cohen functions [2] (one of the best known

members of this class is the Wigner function [3]) only

Husimi functions remain in their own class after scaling

transformation (q, p)→ (λq,λp) where |λ|< 1, and renor-

malization [4]. This means that λ2Q(λq,λp) also describes

some quantum state ie. a density matrix. In the present

work we give the general formula for obtaining the den-

sity matrix from corresponding scaled Husimi function. We

name the so obtained states the stretched states. We give

this formula in two different representations which corre-

spond to two representations of coherent states, namely: a

coordinate representation of coherent states and the repre-

sentation which uses Fock states.

We will now give some details about the streched Fock

states. The Husimi function of the pure Fock state |N〉 is

given by:

QN (q, p) = 〈α|N〉〈N |α〉 =
1

N !
|α|2N e−|α|

2

. (1)

Applying to the Husimi function QN the scaling transfor-

mation we get

Qλ
N
(q, p) = λ2QN (λq,λp) =

λ2

N !
λ2N |α|2N e−λ

2|α|2 . (2)

Applying to the formula (2) our method for obtaining the

density matrix from the scaled Husimi function, we obtain

the stretched Fock state in the form:

ρ̂λ
N
=
λ2N+2

N !

∞
∑

k=0

(N + k)!

k!
(1− λ2)k|N + k〉〈N + k|, (3)

λ2 < 1.

These Fock stretched states consist of pure states |N +
k〉, k = 0,1,2, ...∞. Each of these pure states |N + k〉 is

present in the mixed state with the probability

cN
k
=
λ2N+2(N + k)!

N !k!
(1− λ2)k. (4)

The distribution of pure states is described by the nega-

tive binomial distribution [5]

f (k, r, p) =

�

r + k− 1

k

�

prqk; p+ q = 1; k = 0,1,2, . . .(5)

Using properties of this distribution, it is possible to find

average values of quantities of interest such as the average

photon number in a stretched state as

〈n〉 =
λ2N+2

N !

∞
∑

k=0

(N + k)
(N + k)!

k!
(1−λ2)k =

N + 1

λ2
− 1,

and the dispersion of photon number as

σn = 〈n
2〉 − (〈n〉)2 =

(N + 1)(1−λ2)

λ4
.

We derived the Schrodinger-Robertson uncertainty rela-

tion for stretched states which reads

σqqλσppλ −σ
2
qpλ =

1

λ4
(σqqσpp −σ

2
qp
+ (6)

+
1

2
(1−λ2)(σqq +σpp) +

1

4
(1−λ2)2) ≥

1

4λ4
ħh2.

One can interpret the above inequality as if the scaling

transform (q, p) → (λq,λp) provides an "effective Planck

constant" value ħhe f f = ħh/λ
2. For small λ2 << 1 the effec-

tive Planck constant satisfies the inequality

ħhe f f >> ħh. (7)

The value of Planck constant ħh is responsible for purely

quantum phenomenon such as quantum tunneling [6].

The well known quasiclassical formula for the transmission

probability through the potential barrier U(x) reads

D ≈ exp

�

−
2

ħh

∫ b

a

Æ

2m(U(x)− E)d x

�

. (8)

Here m is the mass of particle and E is its energy.

It can be seen from (8) that for larger constant ħhe f f the

quantum tunneling effect is more pronounced. Therefore, it

can be concluded that stretched states are good candidates

for possible realization of such an effect.
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