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The general dynamics for a closed quantum system is
unitary, completely determined by the Shrödinger equa-
tion. The quantum systems we are interested in are open,
i.e., coupled to an environment. By tracing over the envi-
ronment, one can describe the system evolution by a super-
operator, the dynamical map, which maps the intial quan-
tum state of the system to the state at some later time.

One fundamental problem in this field is distinguish-
ing two classes of evolution of open systems: Markovian
and non-Markovian. This distinction is well understood
in the classical case: a stochastic process is Markovian if
the future statistics only depend on the present state, in-
dependently of its history. In particular, if the classical sys-
tem state takes the values x0, x1, . . . , xn at successive times
t0, t1, . . . , tn, then the stochastic process is Markovian if and
only if the probability of the state being x at any later time
t satisfies P(x , t|xn, tn; ...; x0, t0) = P(x , t|xn, tn).

Clearly, since quantum states are described by density
operators rather than classical random variables, one must
take another approach to define Markovianity for quantum
evolution processes. However, there is no general consen-
sus as to the ‘correct’ approach: different people use the
term “quantum non-Markovianity” to mean very different
things! Hence, to avoid confusion, we will avoid attribut-
ing any definite meaning to this term. Instead, we aim to
significantly clarify the various issues, by discussing a large
number of concepts that have been, or could reasonably
be, used to define quantum Markovianity, and proving a
number of hierarchical relations between them (Fig. 1).

For example, one approach to quantum Markovianity is
based on the idea that the system-environment interaction
has almost no effect on the state of the (typically) much
larger environment. This leads naturally to the Born ap-
proximation (or weak coupling limit), in which the com-
bined state is approximated by a factorisable one, and is
well satisfied in many cases in quantum optics [1]. An al-
ternative approach is based on “quantum white noise” in
which the environment can always be divided in to the
past (interacted) and the future (yet-to-interact) compo-
nents. Both approaches are stronger than requiring the
quantum regression formula (QRF) for multitime system
correlations to be valid [3], which is in turn stronger than
the requirement of “composability” of the dynamical map.
This last concept corresponds to being able to represent the
system evolution as two successive evolutions without re-
setting the system-environment interaction.

The dotted border in Fig. 1 demarcates the above ap-
proaches, based on properties of the system-environment
interaction, from approaches to quantum Markovianity
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FIG. 1. Hierarchy of open quantum system dynamics

based solely of properties of the dynamical map. For ex-
ample, “divisibility", motivated by the classical Chapman-
Kolmogorov equation [1], assumes that the dynamical map
for a given evolution time can be obtained by application
of a completely positive map to the dynamical map at any
earlier time [2], and is equivalent to the existence of a
(time-dependent) Lindblad-type master equation. Other
approaches of this type include requiring the dynamical
map at different times to form a semigroup.

We also prove relations between these and other prop-
erties of interest for open quantum systems, such as the
applicability of dynamical decoupling to preserve quan-
tum information, the existence of (quantum) information
backflow from the environment, and the physical reality of
stochastic pure-state trajectories (Fig. 1). We argue that
all these concepts are related to or reflect the notion of
quantum Markovianity. Finally, we indicate the complex-
ity of this notion by considering analogous approaches for
the classical case – for which many of the approaches in
Fig. 1 either coalesce or become inapplicable.
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