Interfacing atoms and light coupled to excited transitions in warm rubidium vapors
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Atomic transitions between excited states in alkali atoms
attract more and more attention, due to their numerous
applications, including photon pair generation [[1I], also at
telecommunication wavelengths [2]], as well as control of
Rydberg states [3]].

Among others, an important configuration of atomic lev-
els is the diamond configuration, depicted in Fig. [I{a).

In our experiment we apply three driving laser fields, at
780 nm, 795 nm and 776 nm, and observe the signal at 762
nm as a function of driving lasers’ detunings.

Experiments are feasible both in warm atomic vapors and
cold ensembles. In case of warm atoms, Doppler broaden-
ing plays a significant role. In case of the co-popagating
configuration of laser beams [Fig. [I(a)], the two-photon
transition to 5D;;, level is Doppler-broadened. Conse-
quently, the spectrum of signal generation will be broad-
ened.

Generally, the solution to this problem is the counter-
propagating configuration [Fig. [}(c)]. However, in our
case the phase matching condition does not allow perfect
counter-propagation of driving beams. Instead, the angle
between 780 nm and 776 nm is 10 degrees, as can be seen
of the figure. A consequence is the additional, transverse
Doppler broadening.

We have measured the four-wave mixing in both configu-
rations and constructed the theory that enables us to predict
the power of generated signal. Our theoretical approach
takes into account the Doppler broadening, light polariza-
tion and hyperfine structure. Consequently, we can predict
the signal power both in case of warm atoms and cold en-
sembles.

In the co-propagating configuration we obtain a fully ana-
lytical solution. The counter-propagating configuration re-
quires integration over two velocity components. In this
case, numerical integration is necessary.

Figure [2| presents experimental (a) and theoretical (b)
results in the co-propagating configuration for a single four-
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FIG. 1. Experimental configuration: (a) Levels and transi-
tions used in the experiment, (b) co-propagating configuration,
(c) counter-propagating configuration.
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FIG. 2. Experimental (a) and theoretical (b) results for the power
of generated signal at 762 nm as a function of driving laser de-
tunings A,g, and A,y in the co-propagating beam configuration.
Plots (c) and (d) are the cross sections of the maps with experi-
mental data (dots) and theoretical prediction (solid line).

wave mixing resonance. Cross sections (c¢) and (d) display
excellent agreement of our theory and experiment.
More details can be found in a recent paper [[4].
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