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We show how to reliably encode quantum information and send it between two arbitrary general-
relativistic observers without a shared reference frame. Information stored in a quantum field will
inevitably be destroyed by an unknown Bogolyubov transformation relating the observers. However
certain quantum correlations between different, independent fields will be preserved, no matter
what transformation is applied. We show how to efficiently use these correlations in communication
between arbitrary observers.

—Introduction. The central question of the quantum
information theory: how to reliably encode, send and
decode information [1, 2] becomes much more difficult to
answer when relativistic effects are taken into account. In
the non-relativistic case it is usually implicitly assumed
that the sender and receiver share a common reference
frame, i.e. they are not moving relative to each other, and
their common frame is inertial. As soon as one departs
from this assumption one encounters serious conceptual
difficulties. It is known that changing an observer’s ref-
erence frame results in a certain Bogolyubov transforma-
tion of the observed state. The most well known conse-
quence of that is the Unruh effect [3]: a vacuum state of a
quantum field, as observed by an inertial observer, ceases
to be vacuum from the perspective of a uniformly acceler-
ated observer. The latter will detect a thermal state with
the temperature proportional to his proper acceleration.
Such relativity of the vacuum state is just one example,
in general any state will undergo a certain unitary trans-
formation due to motion of the observer. The number
of particles, entanglement and other characteristic quan-
tities are affected in general. Furthermore, entering the
regime of curved space-times adds more sophistication to
the picture, as even the concept of a particle is not well
defined and, as a consequence, the notion of a quantum
state has no clear interpretation [4].

In this work we propose a general method of overcom-
ing the problems of mutual communication with quan-
tum states between two observers without a shared ref-
erence frame. When one party wishes to send a quan-
tum state to the other, the state becomes distorted due
to relative motion. However, following the idea of Ref.
[5] we note that any type of motion affects states of all
quantum fields in an analogous way. Consider a num-
ber of independent, non-interacting quantum fields. Al-
though the states of individual fields will be affected by
the relative motion in a certain way, some correlations
between different fields will remain unaffected. There-
fore if the sender and the receiver have access to at least
two independent quantum fields, they can securely en-
code information into correlations between the fields and
such information will not be affected by their relative
motion. We show how the ability to create and measure
these correlations allows the observers to reliably commu-

nicate even without sharing a common reference frame.
The same method finds application also in more general
schemes. For example, this approach can be applied to
dynamical space-times that are asymptotically flat, such
as the scenario of a collapsing star forming a black hole
or an expanding universe modeled by Robertson-Walker
space-time [4, 6]. We prove how two observers occupying
two asymptotically flat regions of space-time (for exam-
ple the asymptotic past and the asymptotic future of the
expanding universe) can effectively communicate without
any knowledge about the details of the intermediate evo-
lution of space-time. This is possible because according
to the principle of equivalence, gravity affects all quan-
tum fields in the same way. Therefore certain field cor-
relations will be preserved in the dynamical evolution of
the gravitational background.

The idea presented in this work is closely related to the
common concept of decoherence-free subspaces used in
non-relativistic quantum information to avoid or at least
minimize the effect of correlated noise onto communica-
tion [7–12]; it is also related to the discussion found in
[13]. We base our scheme on the observation of [5], where
correlations between two components of light polariza-
tion were used for communication between two inertial
observers without a common reference frame. We gener-
alize this idea to the case of relativistic quantum fields
and arbitrary relative types of motion (inertial or not)
of the observers related by an unspecified Bogolyubov
transformation. Our results can also be applied to other
schemes that involve generic Bogolyubov transformations
between input and output states of at least two indepen-
dent quantum fields.

—The model. In quantum field theory any change of
the coordinate system, for example due to motion of the
observer, leads to a certain transformation of all quan-
tum states [4]. In the Heisenberg picture such transfor-
mation acting on the field operator under question is lin-
ear, since it corresponds to the change of basis of modes
between the two coordinate systems. Such a unitary Bo-
golyubov transformation Û can always be characterized
using a quadratic Hermitian operator Ĥ via the relation
Û = exp{iĤ}. In the presence of more quantum fields
changing the observer affects all the fields via the anal-
ogous Bogolyubov transformation. To be more specific,
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let us consider the simplest example of two real scalar

massive and non-interacting fields, φ̂ and
ˆ̃
φ and let them

undergo a Bogolyubov transformation due to the change
of the observer.

An algebra describing arbitrary quadratic Hermitian

operators has the following set of generators for φ̂ [14, 15]:

Ĝ1
ij = â†i âj + â†jâi, Ĝ2

ij = i
(

â†i âj − â†j âi

)

, (1)

Ĝ3
ij = âiâj + â†i â

†
j , Ĝ4

ij = i
(

âiâj − â†i â
†
j

)

,

where âi are the annihilation operators corresponding to

the decomposition of the field operator φ̂ in the first ba-
sis of modes. We have an analogous set of generators
ˆ̃Gξ
ij for the other field

ˆ̃
φ. Since an arbitrary Bogolyubov

transformation due to motion will act the same way on
both fields, a corresponding Hermitian operator must be
of the form:

Ĥ = Dξ
ij

(

Ĝξ
ij +

ˆ̃Gξ
ij

)

, (2)

where ξ ∈ {1, 2, 3, 4}, Dξ
ij are arbitrary real coeffi-

cients characterizing the Bogolyubov transformation un-
der question, and we use the standard summation con-
vention. In order to maintain the full symmetry between
both fields we will additionally assume that field mass pa-
rameters for both fields are equal: m = m̃. In this case
the transformation governed by Ĥ is symmetric with re-

spect to the interchange φ̂ ↔ ˆ̃
φ.

The transformation Û = exp{iĤ} with Ĥ given by (2)

is a general operation acting symmetrically on fields φ̂

and
ˆ̃
φ. The unknown coefficients Dξ

ij in (2) are related
to the unknown relative motion between the sender and
the receiver. Let us try to use the fields’ interchange
symmetry to allow the two partners to communicate.

Suppose that the sender and the receiver choose an
observable L̂ with a discrete spectrum λi and the sender
chooses to encode and send one of the values λi belonging
to that spectrum. She does it by sending to the receiver
the eigenstate corresponding to the chosen eigenvalue. In
order to retrieve the transmitted information the receiver
measures the acquired state using L̂. Since the sender
and the receiver are in the unknown relative motion, the
transmitted eigenstate undergoes some unknown opera-
tion Û = exp{iĤ}. In the Heisenberg picture this trans-
formation corresponds to the transformation of the con-
sidered observable L̂ → Û †L̂Û . We ask: under what
circumstances the receiver will be able to retrieve the en-
coded classical number λi with his measurement of the
observable L̂?

Let us notice that if L̂ is such that it commutes with
the Hermitian operator Ĥ for an arbitrary choice of the
parameters appearing in the equation (2) it will also com-

mute with Û = exp{iĤ}. Consequently the result of the
measurement performed by the receiver will inevitably

yield the desired eigenvalue λi. It turns out that due
to the field interchange symmetry present in (2) there
always exists such an operator.

Consider the following observable:

L̂ = x̂k
ˆ̃pk − p̂k ˆ̃xk, (3)

where x̂k = (âk+â†k)/
√
2, p̂k = (âk−â†k)/

√
2i are quadra-

tures corresponding to the k-th mode of the field φ̂ and
analogously for the tiled operators. Again, we have used
the standard summation convention. To show the invari-
ance of the operator L̂ let us write it down in the form:

L̂ = −i
(

â†k
ˆ̃ak − âk ˆ̃a

†
k

)

. (4)

Then it is straightforward to verify explicitly that for all

ξ we have
[

L̂, Ĝξ
ij +

ˆ̃Gξ
ij

]

= 0. As a consequence:

[

L̂, Ĥ
]

= 0. (5)

It shows that the operator L̂ is an appropriate observable
for encoding information into a pair of quantum fields.
The information remains robust against the influence of
the relative motion of the observers. Let us also notice
that the eigenstates of the operator L̂ used to encode
information involve entanglement of the two considered
fields therefore both the sender and receiver must be ca-
pable of preparing and measuring such entangled states.

—Eigenstates. Let us determine the eigenstates of the
L̂ operator in the position (quadrature) representation.
We first define:

fλ,k(xk, x̃k) = eiλ arctan(xk/x̃k), λ ∈ N (6)

which is an eigenstate of the operator x̂k
ˆ̃pk − p̂k ˆ̃xk for

fixed k. Function fλ,k(xk, x̃k) is unnormalized. We
note however that it still remains an eigenfunction of
x̂k

ˆ̃pk − p̂k ˆ̃xk after multiplication by an arbitrary (nor-
malized) function of (x2

k + x̃2
k). Therefore, an arbitrary

eigenfunction of the operator L̂ has the following form:

Fλ({x, x̃}) = Πkfλ,k(xk, x̃k)gk(x
2
k + x̃2

k), (7)

where gk are arbitrary, normalizable functions, for ex-
ample Gaussians: gk(x) ∼ exp(−x2). The eigenvalue
λ belongs to the discrete set of natural numbers N:
L̂Fλ = λFλ. The last statement comes from a fairly sim-
ple interpretation of the phase factor present in the solu-
tions given in Eq. (6): arctan(xk/x̃k) is just the angle be-
tween quadratures xk and x̃k in the corresponding config-
uration space. Similar states were discussed in [5] along-
side the scenario involving a less general case of Lorentz
transformations between inertial reference frames.

Due to Eq. (5), the spectrum of eigenvalues λk is in-

variant under operation Û and can be retrieved after the
transformation by measuring the observable L̂. Consider
a specific example of the communication protocol. Sup-
pose that an inertial observer wishes to send a classical
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number λ to a uniformly accelerated recipient moving
with unknown proper acceleration and unspecified direc-
tion. In order to do that the sender has to prepare the
eigenstate (7) and the accelerated receiver has to measure

the operator L̂ leading to the retrieval of the encoded
number λ.

The example of the uniformly accelerated observer
is quite complicated, as the corresponding Bogolyubov
transformation involves mixing all the frequencies [16].
As a consequence, the transmitted eigenstate (7) must
involve all the frequencies as well. There are, however,
situations when the transmitted eigenstate does not have
to cover all the spectrum and a smaller number of modes
is sufficient for the communication protocol.

—Example: expanding universe. Consider the case of
the expanding universe described by a two-dimensional
Robertson-Walker model characterized by a metric:

ds2 = C(τ)(dτ2 − dx2), C(τ) = 1 + ǫ(1 + tanhστ),
(8)

with {ǫ, σ} ∈ R
+. Suppose that an observer in the dis-

tant past wishes to encode an integer number into the
quantum state of the field and send it over to the ob-
server that will receive it in the asymptotic future. We
assume that they lack the detailed knowledge about the
spacetime expansion. To be strict, let us assume that the
sender and the receiver do not know the expansion rate σ
and its magnitude ǫ. The asymptotic past and the future
of the metric (8) are conformally equivalent to Minkowski
spacetime, therefore the definition of quantum states in
these regions exists and our problem is well defined. Let

us take two identical scalar real and massive fields φ̂ and
˜̂
φ existing in the expanding universe and study the solu-
tions of the corresponding Klein-Gordon equation in the
asymptotic regions:

(� +m2)φ̂(x) = 0, (9)

and similarly for
˜̂
φ. The full analysis of the solutions

to this equation can be found in [4]. The asymptotic
solutions in the past and in the future, respectively, take
the following form:

ūk(τ, x) −→τ→−∞ (4πω̄k)
−1/2ei(kx−ω̄kτ),

uk(τ, x) −→τ→+∞ (4πωk)
−1/2ei(kx−ωkτ), (10)

where ω̄k = [k2 +m2]1/2 and ωk = [k2 +m2(1 + 2ǫ)]1/2.
Let us denote the corresponding annihilation operators

in the past with âk and in the future with b̂k then the
Bogolyubov transformation between the two has a very
simple block-diagonal form [4]:

b̂k = α∗
kâk − βkâ

†
−k,

b̂−k = α∗
−kâ−k − β−kâ

†
k, (11)

with an analogous transformation for modes of the field
φ̃ (the explicit form of coefficients αk and βk that can

be found in [4]; they can be always made real by ab-
sorbing their complex phases into re-defined annihila-
tion operators). Here, and from now on, we suppress
the summation convention. Without a loss of generality,
we can limit ourselves to analyzing the Hilbert subspace
spanned by the wavevectors {k,−k} and work effectively
with four-dimensional Hilbert space of two fields. Con-
sequently, we can consider the following Hamiltonian:

Ĥk = i
(

ξ∗k âkâ−k − ξkâ
†
kâ

†
−k + ξ∗k ˆ̃ak ˆ̃a−k − ξk ˆ̃a

†
k
ˆ̃a†−k

)

,

(12)

with the corresponding invariant operator L̂k, such that
[L̂k, Ĥk] = 0:

L̂k = x̂k
ˆ̃pk − p̂k ˆ̃xk + x̂−k

ˆ̃p−k − p̂−k
ˆ̃x−k. (13)

Its eigenstates can be easily written down based on the
discussion presented in the previous paragraphs. For the
k-th sector we have

Fλ,k(xk, x−k, x̃k, x̃−k) = fλ,k(xk, x̃k)gk(x
2
k + x̃2

k)× (14)

×fλ,−k(x−k, x̃−k)g−k(x
2
−k + x̃2

−k).

The above four-mode eigenstates can be used by the ob-
server in the distant past to reliably encode and send a
natural number λ to the future without any knowledge of
the parameters of the intermediate expansion of the uni-
verse. All that he has to do is to prepare the two fields
in a state Fλ,k.

—Conclusions. We have shown how two observers
without a shared reference frame can communicate us-
ing quantum fields in relativistic settings. The unspec-
ified Bogolyubov transformation between the respective
frames changes the fields, however certain correlations
between different fields are preserved. We encode the in-
formation in the correlated states to protect it from the
influence of the unknown transformation.

The reason why reliable communication protocol can
be introduced is the symmetry of the transformation ap-
plied to the transmitted states. In our case it is the fields’
interchange symmetry of the Hamiltonian (2). How-
ever it should be expected that any other type of trans-
formation symmetry can be used to send information
across. For example, if the transformation is symmet-
ric under time translation, one can use temporal corre-
lations as carriers of information, as described in [11].
An analogous protocol would also apply in the case of
spatial translation symmetries. In general, any type of
symmetry leads to preservation of certain correlations.
Therefore one can expect an interesting relation between
Noether’s theorem linking symmetries of the dynamics
and preserved currents, with fundamental ability to com-
municate in the presence of the dynamics. This is cur-
rently a subject of our further investigation.

The results are applicable not only to the case of rela-
tive motions of the observers but also any other physical
settings, where quadratic Hamiltonians or Bogolyubov
transformations play a role.
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