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Quantum metrology aims to harness the power of quantum mechanics to make ultra-precise measurements. A crucial
advantage of quantum metrology is that it provides high precision with a significantly lower particle flux. This is an
important requirement for many applications such as in biological sensing [1], where disturbing the system can damage
the sample, or in gravitational wave detection [2], where the lasers in the interferometer interact with the mirrors enough
to degrade the measurement [3].

It is known that an interferometer that utilizes a stream of independent particles is capable of measurement precision at
the shot noise limit, 1/

p
n, where n is the total number of particles used in the probe state. However, by making use of

quantum mechanical properties this can be improved to the “Heisenberg limit", 1/n, for example by using highly entangled
NOON states [4] or squeezed states [5, 6].

Indeed, the most commonly used optical quantum states employ either squeezing or entanglement to enhance mea-
surements, but here we utilise both these techniques to create squeezed-entangled states, and use the quantum Fisher
information to show that substantial improvements can be gained over states that use squeezing or entanglement in isola-
tion. We then show how the squeezed-entangled states can be created using present day, or near future, technology, and
we obtain a precise phase readout by mixing the two modes at a beam splitter, followed by photon counting at the outputs
[7, 8], as shown in Fig. 1. Finally, we simulate an experiment to show that these states can be used to measure a phase with
sub-classical precision, even in a lossy interferometer. Our results extend the capabilities of practical quantum metrology
schemes and highlight the significant improvements exhibited by states that combine both squeezing and entanglement to
enhance phase measurements.
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FIG. 1: This scheme can be used to measure a phase φ using the input quantum state |Ψinput〉, which we take here to be a squeezed-
entangled state. The phase information can be obtained by mixing the states at a 50:50 beam splitter, and counting photon numbers at
the outputs.
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