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Among the most exciting recent advances in the field
of superconducting quantum circuits is the ability to co-
herently couple microwave photons in low-loss cavities to
quantum electronic conductors (e.g. semiconductor quan-
tum dots or carbon nanotubes). These hybrid quantum
systems hold great promise for quantum information pro-
cessing applications; even more strikingly, they enable
exploration of completely new physical regimes. Here
we study theoretically the new physics emerging when a
quantum electronic conductor is exposed to non-classical
microwaves (e.g. squeezed states, Fock states) [1]. We
study this interplay in the experimentally-relevant situation
where a superconducting microwave cavity is coupled to a
conductor in the tunneling regime, depicted in Fig. 1.
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FIG. 1. Schematic showing a resonant mode of a coplanar waveg-
uide resonator with a quantum conductor. The state of the reso-
nant mode provides a quantum ac voltage across the junction.

The physics of a tunnel junction illuminated by a purely
classical microwave field is equivalent to simply having an
ac bias voltage across the conductor, and the resulting mod-
ification of the current is known as photon-assisted tun-
nelling [2]. Despite the word ‘photon’ in the effect’s name,
in this standard formulation there is nothing quantum in
the treatment of the applied microwave field. To study a
more truly quantum version of photon-assisted tunnelling,
one could consider driving a tunnel junction with a quan-
tum microwave field produced in a cavity [3]. If the cavity
is not driven, the set-up realises another well-studied quan-
tum transport problem: dynamical Coulomb blockade [4].

Here we develop a comprehensive theory describing how
non-equilibrium, driven states of a microwave cavity influ-
ence electronic transport in a coupled tunnel junction, with
a particular focus on cavities which are maintained in truly
nonclassical states. Generalising both standard photon-
assisted tunnelling theory and dynamical Coulomb block-

ade theory, we show that the emission and absorption of
photons by the conductor is naturally characterised by a
quasi-probability distribution, which can fail to be positive.

Explicitly, the tunnel current is

I(t, V ) = e
∑

σ=±

∫

dE Γ(σ · eV − E)Ptot(E; t,σ), (1)

where the function Ptot(E; t,σ), describing energy transfer
to/from the electromagnetic environment, is given by the
causal environmental correlation function evaluated in the
absence of tunnelling,

Genv(t,τ;σ) =−(i/ħh)θ(τ)
D

eiσφ̂(t)e−iσφ̂(t−τ)
E

, (2)

Ptot(E; t,σ) =−
1

π
Im

∫ +∞

−∞
dτeiEτ/ħhGenv(t,τ;σ), (3)

where φ̂ = (e/ħh)
∫ t

−∞ Û(t ′)d t ′ is the phase operator de-
fined in terms of the Heisenberg-picture environmental
voltage operator Û(t). In terms of time-averaged quanti-
ties, this function can be decomposed into a vacuum con-
tribution and an “occupied” contribution,

Ptot(E) =

∫

dE′P0(E − E′)Pocc(E
′). (4)

Pocc(E) is the distribution that can fail to be positive.
The resulting negative quasi-probabilities can have a di-

rect influence on both the conductance and finite-frequency
current noise of the tunnel junction. We also show that this
new quasi-probability distribution has a direct connection
to the well-known Glauber-Sudarshan P-function of quan-
tum optics. We present results for parameter regimes rele-
vant to state-of-the-art experiments, and show that for suf-
ficiently large tunnel resistances, the tunnel junction acts
as a nontrivial and nonlinear probe of the cavity state. Our
results suggest the general potential of using quantum con-
ductors as a powerful tool to characterise, and perhaps con-
trol, quantum microwave states.
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