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The scheme developed in this work allows the full quan-
tum state of a network of harmonically interacting mechan-
ical oscillators to be reconstructed. This is accomplished by
coupling one distinguished oscillator of the network via ra-
diation pressure to the optical mode of a cavity. This miini-
mal requirement of only one coupled oscillator renders the
scheme relatively noninvasive of the mechanical state.

The Hamiltonian for the system, after linearisation of the
coupling, may be written:
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Hint = g(t)X (b1 + b†
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where bn are the mechanical modes,ωn are the mechanical
frequencies, Jnm and Knm are the coupling constants for the
network, g(t) is a time-dependent optomechanical coupling
strength, X = a + a† is the optical mode’s position quadra-
ture and the oscillator labelled 1 is the distinguished one
coupled to the optical mode.

Define S as the symplectic matrix that brings the network
into the basis of normal modes:
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�
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The oscillator network may be transformed into the basis of
normal modes, revealing

H0 =
∑

n

νnd†
ndn (6)
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where Gn = (S1 − S2)∗n1, dn are the normal modes of the
network and νn its eigenfrequencies. Considering an inter-
action picture defined by H0, we have
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system is solved by
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with N the number of oscillators.
Define a measurement operator L = −4ΨX + P (with

P the momentum conjugate with X ) and the mechanical
mode quadratures by Qθ j

= d je
−iθ j + d†

j eiθ j [where θ j =
arg(β j) +

π
2 ]. Note that these quadratures are defined in

terms of the normal mode operators. Given an initial sep-
arable state ρ = |0〉 〈0| ⊗ ρ0 with |0〉 the optical vacuum
and ρ0 an arbitrary state of the network, after an appropri-
ate evolution a measurement of the light is made. A his-
togram of such measurement results produces a set of sta-
tistical moments which are related to the moments of the
quadratures Qθ j

via the following relation:
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Inverting the relation above it is possible to obtain a suit-
able collection of moments for a particular quadrature. The
latter can be selected by changing the time profile of the
interaction strength g(t). Thus a suitable set of marginals
can be extracted from which, in turn, the phase space distri-
bution of the network can be reconstructed using standard
tomographic techniques.
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