Localization versus Gaussianity in the measurement space

A.B. Klimov¹ and C. Muñoz, M. Gaeta

¹Departamento de Fisica, Universidad de Guadalajara, Guadalajara, Mexico*

General features of *N*-qubit systems can be described by discrete distributions in the space of symmetric measurements [1], obtained by projecting an appropriately defined discrete Husimi $Q(\alpha, \beta)$ -function $(\alpha, \beta \text{ are } N$ -component binary strings) from $2^N \times 2^N$ phase-space into 3-dim space of permutation invariants $m = h(\alpha), n = h(\beta), k = h(\alpha + \beta)$, where $h(\kappa) = \sum_{i=1}^N k_j, \kappa = (k_1, ..., k_N), k_j \in \mathbb{Z}_2$. Such distributions, $\tilde{Q}(m, n, k), 0 \le m, n, k \le N$, contain the full and non-redundant information about results of measurements of any collective (invariant under particle permutations) observable in an arbitrary (not necessarily symmetric state).

The \tilde{Q} -function are especially useful both for visualization purposes and for the analysis of general properties of quantum states from measured data for large particle systems. In the macroscopic limit, $N \gg 1$, the \tilde{Q} -function tends to a smooth distribution and is *bounded* by a Gaussian function

$$\tilde{Q}(\mathbf{x}) \subset G(\mathbf{x}) \sim \exp\left(-N(\mathbf{x} - \mathbf{x}_0)\mathbf{T}^{-1}(\mathbf{x} - \mathbf{x}_0)\right), \quad (1)$$

where $\mathbf{x} = (m, n, k)/N$, $\mathbf{x}_0 \sim \langle \mathbf{S} \rangle$, $S_j = \bigoplus \sum_{i=1}^N \sigma_j^{(i)}$, j = x, y, z, are the collective operators and the dispersion matrix **T** is related to the covariance matrix $\Gamma_{ij} = \langle \{S_i, S_j\} \rangle - \langle S_i \rangle \langle S_i \rangle$ and average values $\langle \mathbf{S} \rangle$.

The notion of localization and Gaussianity in the measurement space can be introduced:

States are localized if the width of the \tilde{Q} -function is much less than the extension of the measurement space. The localized states are characterized by the absence of longrange quantum correlations, $\lim_{N\to\infty} M_p/N^p = 0$, where M_p is the *p*-th order central moment of the observable $\mathbf{S} \cdot \mathbf{n}$ (\mathbf{n} is a unit vector), and can be roughly characterized by the volume of the envelop $G(\mathbf{x})$. For pure states the localization property is related to the concept of the macroscopic quantumness [2].

A state is of Gaussian type if it is well described by the envelop (1): $\tilde{Q}(\mathbf{x}) \sim G(\mathbf{x})$, so that the outcomes of the symmetric measurements, i.e. average values $\langle (\mathbf{S} \cdot \mathbf{n})^p \rangle$, $p \ll N$, depend on a small number of parameters, which are essentially the lowest order moments of the collective variables **S**. The Gaussianity can be quantified in terms of the Kullback divergence,

$$D_{Kl} \sim \int d\mathbf{x} \tilde{Q}(\mathbf{x}) \ln \tilde{Q}(\mathbf{x}) / G(\mathbf{x}).$$
 (2)

We provide a comparative analysis of several (W-states, GHZ and locally transformed GHZ, singlet-like states, discrete coherent states, domain wall states, etc.) pure states and the corresponding incoherent mixtures in the limit $N \gg 1$ (see Fig.1). The distributions characterized by large

FIG. 1. Volume of the envelop V_G (1) ~ $\sqrt{\det \mathbf{T}}$, N=100, versus the Kullback divergence (2) N=10. Large values of the volume correspond to non-localized states; large values of the Kullback entropy D_{Kl} correspond to non-Gaussian states. Here $|\xi\rangle^{\otimes N}$ is a direct product of single qubit states with $\mathbf{n} = (1, 1, 1)/\sqrt{3}$; $|N, N/2\rangle$ is the Dicke state with a half number of excitations; $|DW\rangle \sim |000...\rangle + |100...\rangle + ... + |111...\rangle$ is the domain wall state; $\sigma_x^{\otimes N/2}|GHZ\rangle$ is the GHZ-state with N/2 flipped qubits; $|\Psi\rangle^{\otimes N/2}$ is N qubit the singlet state: a product of N/2 anti-symmetric Bell states; mixed states corresponding to pure states $|\psi\rangle$ are denoted as $\rho_{|\psi\rangle}$

1

values of the volume of the envelope (V_A) and the Kullback divergence (D_{Kl}) correspond to non-localized and non-Gaussian states.

We show that:

a) Localized states (with $\lim_{N\to\infty} Tr\mathbf{T}/N = 0$) can reflect essentially non-Gaussian behavior;

b) States with long-range quantum correlations (nonlocalized) can show a high-degree Gaussianity;

c) Incoherent mixtures corresponding to pure localized states are Gaussian.

* klimov.andrei@gmail.com

[1] A.B. Klimov, et al. Phys. Rev.A 70, 062101 (2014).

[2] F. Frowis, et al New J.Phys 14 093039 (2012).