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Quantum mechanics provides insight into fundamental
limits on the achievable measurement precision that can-
not be beaten irrespectively of the extent of any improve-
ments in measurement technology. The best known exam-
ple is that of the optical phase measurement where differ-
ence of phase delays ϕ in the arms of interferometer in the
absence of decoherence can only be measured up to a pre-
cision known as Heisenberg limit that scales as ∆ϕ ≥ 1/N
where N is the number of photons sent into the setup. Pres-
ence of decoherence typically prevents from reaching the
Heisenberg scaling, and it may be demonstrated that for
the generic uncorrelated noise processes classically scaling
bounds ∆ϕ ≥ const/

p
N hold, limiting quantum enhance-

ment to a constant factor precision improvement [1].
Most of the bounds derived in the field of quantum

metrology, including the ones mentioned above, are appli-
cations of the Quantum Cramér-Rao (C-R) bound [2] based
on calculation of the quantum Fisher information (QFI). It
is known that in principle C-R bound may be saturated by
some particular measurement and maximum likelihood es-
timator in the limit of number of repetitions of experiment
k going to infinity.

Practical implications of this last statement are far form
obvious, however. The QFI depends only on the local prop-
erties of the state at a given parameter value ϕ. Saturating
the C-R bound may therefore require unrealistically good
prior knowledge on the value of the estimated parameter.
Moreover, in order to quantify the performance in terms of
the total resources consumed, i.e. kN , one needs to know
the behavior of the required number of repetitions k with
the increase of N , which can be highly nontrivial.

However, there are also alternative ways of deriving
bounds on the precision, that does not suffer from the above
mentioned deficiencies. In particular in the Bayesian ap-
proach one explicitly takes into account the prior knowl-
edge about the parameter value, represented by a probabil-
ity distribution p(ϕ). Finding the minimal average Bayesian
error is much more demanding than maximization of QFI
over input states, yet, once the solution is found it yields an
explicit estimation procedure that saturates the bound.

In [3] we have shown in which situations Bayesian er-
ror is asymptotically equal to the C-R bound. This allowed
us to prove that in the presence of local uncorrelated deco-
herence optimal C-R bound is always asymptotically satu-
rated by a Bayesian procedure. On the other hand, in the
decoherence free case we were able to show that irrespec-
tively of prior knowledge, minimal Bayesian error always
converges toπ/N which is worse than conventional Heisen-
berg scaling 1/N obtained from C-R bound by a factor of π
(see fig. (1)). This shows that, contrary to the intuition,
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FIG. 1. Bayesian cost for various prior distributions p(ϕ) converge
to π/N (gray dashed), not to 1/N C-R bound (black dashed). The
shapes of prior distributions are depicted on the inset.

even with very large prior knowledge C-R bound cannot be
saturated asymptotically in one shot by any measurement
scheme. We considered also the case of collective dephas-
ing which is an example of global decoherence channel and
cannot be decomposed into local uncorrelated channels. In
such case we obtained that there is no connection between
C-R bound and Bayesian error, moreover, the last quantity
depends on prior knowledge.

Our work confirm that in the presence of uncorrelated
decoherence the asymptotic limits on precision of quantum
metrological schemes may be credibly calculated using the
C-R bound based approach whereas in the decoherence-free
unitary parameter estimation a π factor correction needs to
be included irrespectively of the extent of prior knowledge.
These observations provide a firm ground for the use of the
QFI as a sensible figure of merit in analyzing the perfor-
mance of quantum enhanced metrological protocols based
on definite-particle number states.
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