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Entanglement is essential for wide range of quantum
technologies. Unfortunately quantum entanglement is vul-
nerable to losses and noise and degrade fast with propa-
gation distance, but entanglement distillation [1] allows to
struggle with its inevitable degradation. Essence of entan-
glement distillation is to select from a large set of weakly
entangled states smaller subset of quantum states which
have stronger level of entanglement. The main entangle-
ment resource in continuous variable (CV) domain is two-
mode squeezed vacuum state (TMSV) an approximation of
Einstein-Podolsy-Rosen state [2]. TMSV state is a basis for
many quantum technologies such as: continuous-variable
teleportation [3] or quantum repeaters [4].

In this paper we present experimental realisation of CV
entanglement distillation (ED) protocol by means of noise-
less linear amplification (NLA) [5]. Our protocol is based on
technique known as quantum catalysis [6] and, in contrast
to previous implementations of CV ED [7], entanglement
amplification achievable by our technique is not limited by
factor two, so it can be used in practical CV quantum re-
peaters.

In the case of weak squeezing initial TMSV state can be
written as:

|T MSV 〉 ≈ |0,0〉 − γ|1,1〉, (1)

where γ� 1. This state propagates through a lossy channel
with amplitude transmissivity τ. Then, to distill the entan-
glement, we bring it into interference on a low-reflectivity
beam splitter with an ancillary single photon [8]. The distil-
lation event is heralded by detecting a single photon in one
of the outputs of the beam splitter. As a result, the state
becomes in the first order of r, γ and τ:

r|0, 0〉 − γτ|1,1〉, (2)

We see that, although the single-photon component is de-
graded by the loss, this is compensated by the reduction of
the vacuum part due to noiseless amplification. Thus, the
final entanglement depends only on the ratio γτ

r . And at
gain level g = (γτ)−1 the distilled state reaches initial level
of entanglement.

In the experiment, we start with a TMSV with the differ-
ence position quadrature variance of




(X1 − X2)2
�

= 0.86±
0.01. Then we introduce a one-sided 95% loss. After the
amplification, the difference quadrature variance returns to
the initial level:




(X1 − X2)2
�

= 0.87±0.01 [Fig. 1(a)]. This

FIG. 1. Experimental results. a) Two-mode squeezing as a func-
tion of the NLA gain. The vertical axis is scaled in the units of shot
noise. The upper set of points correspond to the position quadra-
ture sum (antisqueezed), lower to the difference (squeezed). The
purple lines corresponds to the initial state squeezing and anti-
squeezing; gray line to the state after one-sided 95% loss, where
the squeezed and antisqueezed variances are degraded to 0.993
and 1.010, respectively. b) Duan inseparability parameter. The
horizontal lines are as in (a); the red line corresponds to the in-
separability parameter for a perfect EPR state that has experienced
a one-sided 95% loss (total Duan variance equals 0.905).

result corresponds to the amplification by factor 10 and that
is much more than previously obtained results [7]. In [Fig.
1(b)] we calculate the Duan [9] inseparability criterion for
CV systems and show that the amount of the recovered en-
tanglement is greater than that even a perfect EPR state
would exhibit after a one-sided 95% loss.

∗ LVOV@ucalgary.ca
[1] C. H. Bennett, et al., Phys. Rev. Lett. 76, 722 (1996).
[2] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777

(1935).
[3] A. Furusawa, et al., Science 282, 706 (1998).
[4] N. Sangouard, et al., Rev. Mod. Phys. 83, 33 (2011).
[5] T. C. Ralph, et al., in Proceedings of 9th International Confer-

ence on Quantum Communication Measurement and Comput-
ing, edited by A. Lvovsky (AIP, 2009), pp. 155-160

[6] A. I. Lvovsky and J. Mlynek, Phys.Rev.Lett. 88, 250401 (2002).
[7] Y. Kurochkin, et al., Phys. Rev. Lett. 112, 070402 (2014).
[8] A. I. Lvovsky, et al., Phys. Rev. Lett. 87, 050402 (2001).
[9] L. M. Duan, et al., Phys. Rev. Lett. 84, 2722 (2000).

mailto:LVOV@ucalgary.ca

	Continuous Variable Entanglement Distillation by means of Noiseless Linear Amplification.
	References


