State Reconstruction of an Oscillator Network in an Optomechanical Setting

Darren Moore and Alessandro Ferraro

1School of Mathematics and Physics, Queen’s University Belfast, BT7 1NN, UK

The scheme developed in this work allows the full quantum state of a network of harmonically interacting mechanical oscillators to be reconstructed. This is accomplished by coupling one distinguished oscillator of the network via radiation pressure to the optical mode of a cavity. This minimal requirement of only one coupled oscillator renders the scheme relatively noninvasive of the mechanical state.

The Hamiltonian for the system, after linearisation of the coupling, may be written:

\[
H = H_0 + H_{\text{int}}
\]

\[
H_0 = \sum_n \omega_n b_n^\dagger b_n + \sum_{n<m} J_{nm} (b_n b_m^\dagger + b_m b_n^\dagger)
\]

\[
+ \sum_{n<m} K_{nm} (b_n b_m + b_m^\dagger b_n^\dagger)
\]

\[
H_{\text{int}} = g(t) X (b_1 + b_1^\dagger)
\]

where \(b_n \) are the mechanical modes, \(\omega_n \) are the mechanical frequencies, \(J_{nm} \) and \(K_{nm} \) are the coupling constants for the network, \(g(t) \) is a time-dependent optomechanical coupling strength, \(X = a + a^\dagger \) is the optical mode's position quadrature and the oscillator labelled 1 is the distinguished one coupled to the optical mode.

Define \(S \) as the symplectic matrix that brings the network into the basis of normal modes:

\[
S = \begin{pmatrix} S_1 & S_2 \\ S_2^\dagger & S_1^\dagger \end{pmatrix}.
\]

The oscillator network may be transformed into the basis of normal modes, revealing

\[
H_0 = \sum_n \nu_n G_n^d d_n
\]

\[
H_{\text{int}} = g(t) X \sum_n G_n d_n + G_n^* d_n^\dagger
\]

where \(G_n = (S_1 - S_2) n_1 \), \(d_n \) are the normal modes of the network and \(\nu_n \) its eigenfrequencies. Considering an interaction picture defined by \(H_0 \), we have

\[
H_I = g(t) X \sum_j h_j(t)
\]

where \(h_j = G_j d_j e^{-i\nu_j t} + G_j^* d_j^\dagger e^{i\nu_j t} \). The dynamics of the system is solved by

\[
U = e^{i\Psi x^2} D(X \beta)
\]

where \(\Psi = \sum_j \psi_j, \beta = (\beta_1, \beta_2, \ldots, \beta_N)^\dagger \) and

\[
\beta_j = -i G_j \int_0^t g(s) e^{i\nu_j s} ds
\]

\[
\psi = -\int_0^t \text{Im} (\beta_j \beta_j^\dagger) ds
\]

with \(N \) the number of oscillators.

Define a measurement operator \(L = -4\Psi X + P \) (with \(P \) the momentum conjugate with \(X \)) and the mechanical mode quadratures by \(Q_{\beta_j} = d_j e^{-i\theta_j} + d_j^\dagger e^{i\theta_j} \) [where \(\theta_j = \text{arg}(\beta_j) + \frac{\pi}{2} \)]. Note that these quadratures are defined in terms of the normal mode operators. Given an initial separable state \(\rho = |0\rangle \langle 0| \otimes \rho_0 \) with \(|0\rangle \) the optical vacuum and \(\rho_0 \) an arbitrary state of the network, after an appropriate evolution a measurement of the light is made. A histogram of such measurement results produces a set of statistical moments which are related to the moments of the quadratures \(Q_{\beta_j} \) via the following relation:

\[
\langle L^n \rangle = \sum_{k_0+k_1+\ldots+k_N=n} \left(\begin{array}{c} n \\ k_0, k_1, \ldots, k_N \end{array} \right) |0\rangle \langle 0| P^{k_0} \langle 0| \]

\[
(11 \leq j \leq N(-2|\beta_j|Q_{\beta_j})^k \rangle
\]

Inverting the relation above it is possible to obtain a suitable collection of moments for a particular quadrature. The latter can be selected by changing the time profile of the interaction strength \(g(t) \). Thus a suitable set of marginals can be extracted from which, in turn, the phase space distribution of the network can be reconstructed using standard tomographic techniques.